This report is a snapshot of your water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies.

Do I Need to Take Special Precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care provider.

Microbiological Contaminants:

The EPA has established National Primary Drinking Water Regulations to minimize transmission of waterborne diseases. The presence of certain microbiological contaminants in drinking water, especially E. coli can be an indicator of the presence of other harmful microbes, including viruses and some species of parasites. These parasites may cause illness that can range from mild gastrointestinal symptoms to severe dysentery; some can result in death. The presence of E. coli in water is a sign that pathogens may be present in the water and that people should avoid contact with it. The presence of E. coli in water also can indicate a problem with the sewage system, where it is sometimes found.

Chemical Contaminants:

Some contaminants in water, such as lead and copper, can result from industrial processes or from corrosion of water pipes. Other contaminants may result from natural deposits or from pollution. Conversely, some contaminants may be naturally occurring. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Why Are There Contaminants in My Drinking Water?

Drinking water, including bottled water, may reasonably be expected to contain at least 80 contaminants. Food and drug administration regulations set limits for contaminants in bottled water which must provide the same protection for public health.

Table:

The table below lists all of the drinking water contaminants detected during the calendar year of the report. The presence of contaminants and potential health effects can be estimated by consulting the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791). The table below lists all of the drinking water contaminants detected during the calendar year of the report. The EPA or the State requires monitoring for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Water Quality Table

<table>
<thead>
<tr>
<th>Source</th>
<th>MCLG</th>
<th>MCL</th>
<th>Year</th>
<th>Action Level</th>
<th>Number of Sites Over A.L.</th>
<th>Sample Date</th>
<th>Exceeded</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
</table>
| Copper | 1.3 | 1.3 | 1994 | 0.5 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Lead | 0.15 | 0.15| 1990 | 0.05 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Fluoride | 2.0 | 2.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Selenium | 5.0 | 5.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Nitrate (reported as Nitrogen) | 4.0 | 4.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |

Disinfection By-Products:

The table below lists all of the drinking water contaminants detected during the calendar year of the report. The EPA or the State requires monitoring for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

<table>
<thead>
<tr>
<th>Source</th>
<th>MCLG</th>
<th>MCL</th>
<th>Year</th>
<th>Action Level</th>
<th>Number of Sites Over A.L.</th>
<th>Sample Date</th>
<th>Exceeded</th>
<th>Typical Source</th>
<th>Violation</th>
</tr>
</thead>
</table>
| Copper | 1.3 | 1.3 | 1994 | 0.5 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Lead | 0.15 | 0.15| 1990 | 0.05 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Fluoride | 2.0 | 2.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Selenium | 5.0 | 5.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |
| Nitrate (reported as Nitrogen) | 4.0 | 4.0 | 2016 | 1.0 | 0 sample over action level| 2017 | No | Corrosion of household plumbing systems:
Corrosion of natural deposits;
leaching from industrial manufacturing;
erosion of natural deposits | No |

Microbiological Contaminants:

We are required to test your water regularly for signs of microbial contamination. Positive test results could lead to the issuance of public health advisories. Assessments could also trigger corrective actions. The information below summarizes the results of the tests.
Microbiological Testing:

Microbiological Testing: Units: ppb

Uranium

Total Trichloroethenes (TCEs) ppm

Anionic Units: ppb

Total Haloacetic Acids (TAA) ppm

Barium

Inorganic Contaminants:

Chromium Units: ppm

Nitrate [reported as Nitrogen] ppm

Arsenic ppm

Total E. coli

Total Acids (HAA5)

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of natural or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Deficiency Description: When drinking water meets the EPA standard for arsenic, a dose contains low levels of arsenic. The EPA standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. The EPA continues to research the health effects of low levels of arsenic which are not known to cause chronic effects at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Additional Information for Nitrate

Nitrate in drinking water is typically below 10 ppm is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of natural or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. PWS system is responsible for providing high quality drinking water, but cannot control the variety of materials used in materials used in components. When your water has lead, the system may be responsible for removing lead from the water by corrosion. If you are concerned about lead in your water, you may wish to test for lead in your water. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure can be obtained from your local water utility or state or local government agencies.

Deficiency Title: Cross-Connection Control Program (CCCP)

How Can I Get Involved?

Significant Deficiencies

Sanitary deficiencies are defects in a water system’s infrastructure, design, operation, management, or management that cause, or may cause interruptions to the “multiple barrier” protection system and adversely affect the system’s ability to produce safe and reliable drinking water in adequate quantities.

The following is a listing of significant deficiencies that have yet to be corrected. Your public water system is still working to correct these deficiencies and interim milestones are shown, as applicable.

Deficiency Description: When drinking water meets the EPA standard for arsenic, a dose contains low levels of arsenic. The EPA standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. The EPA continues to research the health effects of low levels of arsenic which are not known to cause chronic effects at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Additional Information for Nitrate

Nitrate in drinking water is typically below 10 ppm is a health risk for infants of less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of natural or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. PWS system is responsible for providing high quality drinking water, but cannot control the variety of materials used in materials used in components. When your water has lead, the system may be responsible for removing lead from the water by corrosion. If you are concerned about lead in your water, you may wish to test for lead in your water. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure can be obtained from your local water utility or state or local government agencies.

Deficiency Title: Cross-Connection Control Program (CCCP)

How Can I Get Involved?

Significant Deficiencies

Sanitary deficiencies are defects in a water system’s infrastructure, design, operation, management, or management that cause, or may cause interruptions to the “multiple barrier” protection system and adversely affect the system’s ability to produce safe and reliable drinking water in adequate quantities.

The following is a listing of significant deficiencies that have yet to be corrected. Your public water system is still working to correct these deficiencies and interim milestones are shown, as applicable.

Deficiency Title: Cross-Connection Control Program (CCCP)

How Can I Get Involved?

Significant Deficiencies

Sanitary deficiencies are defects in a water system’s infrastructure, design, operation, management, or management that cause, or may cause interruptions to the “multiple barrier” protection system and adversely affect the system’s ability to produce safe and reliable drinking water in adequate quantities.

The following is a listing of significant deficiencies that have yet to be corrected. Your public water system is still working to correct these deficiencies and interim milestones are shown, as applicable.

Deficiency Title: Cross-Connection Control Program (CCCP)

How Can I Get Involved?

Significant Deficiencies

Sanitary deficiencies are defects in a water system’s infrastructure, design, operation, management, or management that cause, or may cause interruptions to the “multiple barrier” protection system and adversely affect the system’s ability to produce safe and reliable drinking water in adequate quantities.

The following is a listing of significant deficiencies that have yet to be corrected. Your public water system is still working to correct these deficiencies and interim milestones are shown, as applicable.