

PESTICIDE CONTROL OFFICE

Community Applicator Certification Training

GILA RIVER INDIAN COMMUNITY DEPARTMENT OF ENVIRONMENTAL QUALITY

Module 1: Pest Management and the IPM Philosophy

Pest Management & the IPM Philosophy

This Module Will Help You:

- Understand the historical perspective of pest management
- Know the main groups of pests
- Learn about resources to identify specific pests and damage symptoms
- Understand Integrated Pest Management (IPM)
- Explain the significance of preventive measures
- Interpret pest population levels and environmental influences
- Perceive pesticide resistance and what causes pesticides to fail

History of Pesticides

Media Credit: Penn State Extension, the Pesticide Education Program, and the Pennsylvania Department of Agriculture

https://www.youtube.com/watch?v=gyZPDcr5_dw

What is a Pest?

Any organism that is detrimental to humans

- Destroys crops & structures
- Poses threats to human health and livestock
- Reduces aesthetic and recreational value

House mouse (Mus musculus) Image Credit: Jim McCormac, Ohio Department of Natural Resources

Scorpion phosphoresces under black light Image Credit: UA Association of Environmental and Engineering Geologists

Kudzu (Pueraria montana var. lobata), a common sight in the South Image Credit: Johnny Randall, North Carolina Botanical Garden

Four Major Pest Categories

- Weeds: Undesirable plants
- Invertebrates
 - Insects
 - Spiders and mites
 - Sowbugs, pillbugs
 - Snails, slugs, and mussels
- Vertebrates
 - Birds
 - Snakes
 - Fish
 - Rodents and other mammals

- Plant diseases
 - Pathogens: Living Agents
 - Fungi
 - Bacteri
 - Viruses
 - Nematodes
 - Phytoplasmas
 - Non-living Agents
 - Temperature extremes
 - Air pollution
 - Lack of or excess nutrients

Pest Management

- Is the pest really causing the problem?
- 1st Step: Always identify the pest before taking action!
- Become familiar with its life cycle and habits
- Design a pest management plan
- Misidentification = ineffective control

Pest Identification is Critical

- Understand that all stages of a pest do not look the same
- Know the host of the pest
- Use books, extension bulletins, field guides, Web, etc.
- Have pests examined by specialists

Bed Bug lifecycle chart Image Credit: Centers for Disease Control

Characteristic Signs of Pests

- Birds and Rodents: Unique nests
- Insects: Feeding damage
- Fecal Material: Frass or guano
- Weeds: Flowers, seeds, or unusual growth habits
- **Pathogens:** Patterns or growths on plant tissue

Control Methods

- Natural Controls:
 - Wind
 - Temperature
 - Humidity, rain
 - Rivers, lakes, mountains
 - Pathogens, predators
 - Food supply of the pest

- Human-applied Controls:
 - Biological
 - Mechanical
 - Cultural
 - Physical
 - Genetic
 - Chemical
 - Regulatory

Biological Control

Gambusia affinis, mosquito larvae Image Credit: Los Angeles County West Vector & Vector-Borne Disease Control District

- Usually, pests are not native to area
- Locate pest's native homeland and find natural enemies
- Before releasing natural enemy, evaluate if suitable
- Rear, release, redistribute

Mechanical Control

Use of devices, machines, and other physical methods to reduce pest populations or to alter the environment-

- Cultivation:
 - Disrupt soil conditions for weeds and insects
 - Hoes
 - Plows
 - Disks
 - Control growth or destroy plants
 - Mowers

- Trapping:
 - Use of mechanical or sticky device
 - Captures pests in a holding device
 - Restrains the pest
 - Kills the pest

Mechanical Control

- Exclusion:
 - Nets, screens, air curtains
 - Caulking, steel wool
 - Metal tree collars
 - Sticky materials
 - Sharp objects

Cultural Controls

- Alter Conditions or Pest Behaviors:
 - Mowing
 - Irrigation
 - Aeration
 - Fertilization
 - Mulching
 - Tolerant crop varieties
 - Planting timing
 - Crop rotation
 - Trap crops

- Sanitation- Eliminate Food, Water, and Shelter:
 - Destroy infected crop residues
 - Weed to reduce pest harborage
 - Manage manure
 - Seal garbage cans
 - Remove soil near siding

Physical, Genetic, and Regulatory Controls

- Alter the Physical Environment:
 - Humidity
 - Temperature
 - Air movement
 - Water
 - Light
- Genetics or Host Resistance:
 - Add or modify genetic material in crops and ornamental plants
 - Breed or select plants for resistance

- Regulatory- Quarantine prevents pests from entry or movement:
 - Monitor airports, ocean ports, borders
 - Nursery stocks and other plant materials
 - Eradication programs eliminate a pest from a defined area
 - Mosquito Abatement: Used for public health

Chemical Control

Pesticides Herbicides **Rodenticides** Insecticides Disinfectants **Fungicides** Etc.

- Pesticide: Any material that is applied to kill, attract, repel, or regulate pests
 - Disinfectants, fungicides, herbicides, insecticides, repellents, defoliants, etc.
- Advantages: Effective, fast, easy

Pesticides Vary by...

- Mode of Action: How They Work to Control the Pest
 - Systemic pesticides are absorbed through tissues and transported elsewhere where the pest encounters it through feeding
 - Used on plants or livestock
 - Contact pesticides must come in direct contact with the target pest

- Selectivity: What Range of Pests They Affect
 - Selective: Kills only certain weeds, insects, plant pathogens
 - Non-selective: Kills all related pests

Pesticides Vary by...

- **Persistence:** How Long They Remain Active
 - Residual Pesticides: Remain active for weeks, months, years
 - Non-residual: Inactivated immediately or within a few days

Residual vs. Non-residual

Non-residual spray application Image Credit: Tony McCandless, GRIC PCO

Pesticide Resistance

The ability of a pest to tolerate a pesticide that once controlled it

- Intensive pesticide use kills susceptible pests in a population, leaving some resistant ones to reproduce
 - Use of similar modes of action
 - Frequency of applications
 - Persistence of the chemical
 - Pest rate of reproduction & offspring numbers

Exposed to a non-lethal dose Now resistant pest has offspring, resistance passed onto some

Resistance Management

- Do not use products repeatedly that have similar modes of action
- Allow some pests to survive
 - Limit treatment areas
 - Consider using lower dosages
- Use caution: new compounds having very specific actions may develop resistance more quickly
- Use non-chemical means to control resistant pest populations

What is Integrated Pest Management?

- A Balanced, Tactical Approach...
 - Anticipates and prevents damage
 - Uses several tactics in combination
 - Improves effectiveness, reduces side effects
 - Relies on identification, measurement, assessment, and knowledge

- Why Practice IPM?
 - Maintains balanced ecosystems
 - Pesticides alone may be ineffective
 - Promotes a healthy environment
 - Saves money
 - Maintains a good public image

Components of IPM

Media Credit: University of Maryland Extension

https://www.youtube.com/watch?v=GqjJg6KGOe4

Integrated Pest Management

- Considerations for Choosing Control Methods
 - Determine damage level you can withstand
 - Determine desired outcomes
 - Prevention
 - Suppression
 - Eradication
 - Manage for pesticide resistance
 - Estimate costs
 - Monetary
 - Environmental impacts

- IPM is Driven by Decisions
 - Identify pest and know its biology
 - Monitor and survey for pests
 - Set IPM goal: prevent, suppress, eradicate
 - Implement
 - Select control strategies
 - Timing
 - Economics
 - Environmental impacts
 - Regulatory restrictions
 - Evaluate

Acknowledgements

Adapted with permission from the Washington State University Urban IPM and Pesticide Safety Education Program for use by the **GILA RIVER INDIAN COMMUNITY**

Department of Environmental Quality

Pesticide Control Office

PO Box 2139 • 45 S. Church Street • Sacaton, AZ 85147 Office (520) 562-2234 • Fax (520) 562-3198 Email: GRIC.Pesticide.Office@GRIC.nsn.us Web: www.GRICDEQ.org